HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year
Description Segment Analysis
TYLI
6/25/14
AM Peak

Gray
2013

Input Data
A. Greenlaw

Route 26 Corridor NB
Libby Hill Rd to N Raymond Rd
\qquad
\qquad

Highway class Class	3		Peak hour factor, PHF	0.94		
Shoulder width	6.0	ft	\% Trucks and buses	12	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Level		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	56	$\%$	
	Up/down	-	$\%$	Access point density	40	$/ \mathrm{mi}$

Analysis direction volume, Vd 339 veh/h
Opposing direction volume, Vo 1044 veh/h
Average Travel Speed

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.988		1.000	
Grade adjustment factor,(note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	365	pc/h	1111	pc / h
Base percent time-spent-following, (note-4)	BPTSFd	49.5	$\%$	
Adjustment for no-passing zones, fnp		16.9		
Percent time-spent-following, PTSFFd		53.7	$\%$	

\qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	108	veh-mi
Peak-hour vehicle-miles of travel, VMT60	407	veh-mi
Peak 15-min total travel time, TT15	4.7	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	22.9	mi / h	
Percent time-spent-following, PTSFd (from above)	53.7		
Level of service, LoSd (from above)	E		

Average Travel Speed with Passing Lane \qquad

Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		mi
length of the passing lane for average travel speed, Ld	-	
Adj. factor for the effect of passing lane	-	
on average speed, fpl		
Average travel speed including passing lane, ATSpl	ercent free flow speed including passing lane, PFFSpl	0.0

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^0]\qquad

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 360.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.17
Bicycle LOS Score, BLOS 5.15
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year
Description Segment Analysis
TYLI
6/25/14
PM Peak

Gray
2013

Input Data
A. Greenlaw

Route 26 Corridor NB
Libby Hill Rd to N Raymond Rd
\qquad
\qquad

Highway class Class	3		Peak hour factor, PHF	0.94		
Shoulder width	6.0	ft	\% Trucks and buses	3	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Level		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	56	$\%$	
	Up/down	-	$\%$	Access point density	40	$/ \mathrm{mi}$

Analysis direction volume, Vd 1138 veh/h
Opposing direction volume, Vo 574 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.71 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 363 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1366 | veh-mi |
| Peak 15-min total travel time, TT15 | 18.4 | veh-h |
| Capacity from ATS, CdATS | 1695 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | $v e h / h ~$ |
| Directional Capacity | 1695 | veh/h |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$\mathbf{1 9 . 8}$	mi / h
Percent time-spent-following, PTSFd (from above)	91.2	E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^1]\qquad

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1210.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.17
Bicycle LOS Score, BLOS 2.99
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
```

HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year
Description Segment Analysis
TYLI
6/25/14
AM Peak

Gray
2013

Input Data
A. Greenlaw

Route 26 Corridor SB
Libby Hill Rd to N Raymond Rd
\qquad
\qquad

Highway class Class	3			Peak hour factor, PHF	0.83	
Shoulder width	6.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Level		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	55	$\%$	
	Up/down	-	$\%$	Access point density	40	$/ \mathrm{mi}$

Analysis direction volume, Vd 1044 veh/h
Opposing direction volume, Vo 339 veh/h
Average Travel Speed

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		1.000	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	1258	pc / h	408	pc / h
Base percent time-spent-following, (note-4	e-4) BPTSFd	79.3	\%	
Adjustment for no-passing zones, fnp		14.9		
Percent time-spent-following, PTSFd		90.6	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.75 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 377 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1253 | veh-mi |
| Peak 15-min total travel time, TT15 | 18.4 | veh-h |
| Capacity from ATS, CdATS | 1675 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | veh/h |
| Directional Capacity | 1675 | veh/h |

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^2]\qquad

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1257.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.17
Bicycle LOS Score, BLOS 3.50
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
```

HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year
Description Segment Analysis
TYLI
6/25/14
PM Peak

Gray
2013

Input Data
A. Greenlaw

Route 26 Corridor SB
Libby Hill Rd to N Raymond Rd
\qquad
\qquad

| Highway class Class | 3 | | Peak hour factor, PHF | 0.88 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 6.0 | ft | \% Trucks and buses | 5 | $\%$ | |
| Lane width | 12.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 1.2 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Level | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 55 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 40 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 574 veh/h
Opposing direction volume, Vo 1138 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad
Level of service, LOS
E
Volume to capacity ratio, v/c
Peak $15-\mathrm{min}$ vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity
0.39

196
689
10.1

1700
1700
1700
veh-mi
veh-mi
veh-h
veh/h
veh/h
veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	19.4	mi / h	
Percent time-spent-following, PTSFd (from above)	73.7		
Level of service, LOSd (from above)	E		

Average Travel Speed with Passing Lane \qquad

Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		mi
length of the passing lane for average travel speed, Ld	-	
Adj. factor for the effect of passing lane		
on average speed, fpl		
Average travel speed including passing lane, ATSpl	-	
Percent free flow speed including passing lane, PFFSpl	0.0	$\%$

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

Level of Service and Other Performance Measures with Passing Lane
 \qquad

Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 652.3
Effective width of outside lane, We 24.00
Effective speed factor, St
4.17
Bicycle LOS Score, BLOS 3.17
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
```

HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year Description
A. Greenlaw

TYLI
6/25/14
AM Peak
Route 26 Corridor NB
Libby Hill Rd to N Raymond Rd
Gray
Future No Build
Segment Analysis
Input Data \qquad

Highway class	Class	3		Peak hour factor, PHF	0.94	
Shoulder width	6.0	ft	\% Trucks and buses	12	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Level		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	56	$\%$	
	Up/down	-	$\%$	Access point density	40	$/ \mathrm{mi}$

Analysis direction volume, Vd 415 veh/h
Opposing direction volume, Vo 1274 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00		1.00
Directional flow rate, (note-2) vi	441	pc/h	1355
Base percent time-spent-following, (note-4)	BPTSFd	57.3	$\%$
Adjustment for no-passing zones, fnp		13.7	
Percent time-spent-following, PTSFd	60.7	$\%$	

| | | |
| :--- | :--- | :--- | :--- |
| Level of service, LoS | E | |
| Volume to capacity ratio, v/c | 0.27 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 132 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 498 | veh-mi |
| Peak 15-min total travel time, TT15 | 6.5 | $\mathrm{veh}-\mathrm{h}$ |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | | |

Passing Lane Analysis

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	6.4	mi / h
Percent time-spent-following, PTSFd (from above)	60.7	E

Average Travel speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 441.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.17
Bicycle LOS Score, BLOS 5.25
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year Description
A. Greenlaw

TYLI
6/25/14
PM Peak
Route 26 Corridor NB
Libby Hill Rd to N Raymond Rd
Gray
Future No Build
Segment Analysis
Input Data \qquad

| Highway class | Class | 3 | | Peak hour factor, PHF | 0.94 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 6.0 | ft | \% Trucks and buses | 3 | $\%$ | |
| Lane width | 12.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 1.2 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Level | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 56 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 40 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 1390 veh/h
Opposing direction volume, Vo 701 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, V/c | 0.87 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 444 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1668 | veh-mi |
| Peak 15-min total travel time, TT15 | 26.2 | veh-h |
| Capacity from ATS, CdATS | 1695 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | veh/h |
| Directional Capacity | 1695 | veh/h |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	16.9	mi / h	
Percent time-spent-following, PTSFd (from above)	95.2		
Level of service, LOSd (from above)	E		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^3]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1478.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.17
Bicycle LOS Score, BLOS 3.09
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
```

HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year Description
A. Greenlaw

TYLI
6/25/14
AM Peak
Route 26 Corridor SB
Libby Hill Rd to N Raymond Rd
Gray
Future No Build
Segment Analysis
Input Data

Highway class Class	3		Peak hour factor, PHF	0.83		
Shoulder width	6.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Level		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	55	$\%$	
	Up/down	-	$\%$	Access point density	40	$/ \mathrm{mi}$

Analysis direction volume, Vd 1274 veh/h
Opposing direction volume, Vo 415 veh/h

Average Travel Speed

Direction Analy	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		1.000	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	1535	pc / h	500	
Base percent time-spent-following, (note-4	-4-4) BPTSFd	85.5	\%	
Adjustment for no-passing zones, fnp		11.6		
Percent time-spent-following, PTSFd		94.2	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS
Volume to capacity ratio, v/c
Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity

E
0.91

460
1529
25.8

1683
1700
1683
veh-mi
veh-mi
veh-h
veh/h
veh/h
veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	17.8	mi / h
Percent time-spent-following, PTSFd (from above)	94.2	E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

_____Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1534.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.17
Bicycle LOS Score, BLOS 3.60
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
```

HCS 2010: Two-Lane Highways Release 6.3

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period Highway
From/To
Jurisdiction
Analysis Year Description
A. Greenlaw

TYLI
6/25/14
PM Peak
Route 26 Corridor SB
Libby Hill Rd to N Raymond Rd
Gray
Future No Build
Segment Analysis
Input Data \qquad

| Highway class Class | 3 | | Peak hour factor, PHF | 0.88 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 6.0 | ft | \% Trucks and buses | 5 | $\%$ | |
| Lane width | 12.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 1.2 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Level | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 55 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 40 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 701 veh/h
Opposing direction volume, Vo 1390 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0		1.0
Heavy-vehicle adjustment factor, fHV	1.000		1.000
Grade adjustment factor, (note-1) fg	1.00		1.00
Directional flow rate, (note-2) vi	797	pc/h	
Base percent time-spent-following, (note-4)	BPTSFd	76.7	$\%$
Adjustment for no-passing zones, fnp		1580	pc / h
Percent time-spent-following, PTSFd		81.1	$\%$

Level of service, LoS	E	
Volume to capacity ratio, v/c	0.47	
Peak 15-min vehicle-miles of travel, VMT15	239	veh-mi
Peak-hour vehicle-miles of travel, VMT60	841	veh-mi
Peak 15-min total travel time, TT15	14.8	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	16.1	mi / h	
Percent time-spent-following, PTSFd (from above)	81.1		
Level of service, LoSd (from above)	E		

Average Travel Speed with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		
length of the passing lane for average travel speed, Ld	-	mi
Adj. factor for the effect of passing lane		
on average speed, fpl	-	
Average travel speed including passing lane, ATSpl	-	
Percent free flow speed including passing lane, PFFSpl	0.0	\%

Percent Time-Spent-Following with Passing Lane \qquad
$\begin{array}{ccc}\text { Downstream length of two-lane highway within effective length } & \\ \text { of passing lane for percent time-spent-following, Lde } & \text { - } & \text { mi } \\ \text { Length of two-lane highway downstream of effective length of } & \\ \text { the passing lane for percent time-spent-following, Ld } & - & \text { mi } \\ \text { Adj. factor for the effect of passing lane } & \\ \text { on percent time-spent-following, fpl } & - \\ \text { Percent time-spent-following } \\ \text { including passing lane, PTSFpl } & \text { - }\end{array}$

[^4]\qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 40
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 796.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.17
Bicycle LOS Score, BLOS 3.27
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
```


[^0]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^1]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^2]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^3]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^4]: Level of Service and Other Performance Measures with Passing Lane

